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A Deep-Learning-Based Microwave Radiative
Transfer Emulator for Data Assimilation

and Remote Sensing
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Abstract—In this article, we introduce a fully connected deep
neural network algorithm to emulate the Community Cadiative
Transfer Model (FCDN_CRTM) simulation of brightness temper-
atures (BTs) from the Advanced Technology Microwave Sounder
(ATMS) channels for clear-sky cases over ocean surfaces. The
FCDN_CRTM fine-tuned through three sensitivity experiments
with respect to sample-size determination, model separation, and
introduction of novel features toward improving the accuracy of
the model. In addition to the BT simulation, we evaluated the
Jacobians with respect to surface and atmospheric parameters.
Atmosphere profiles from the European Centre for Medium-Range
Weather Forecasts, sea surface temperature from the Canadian
Meteorology Centre, and ATMS sensor data records were used as
FCDN_CRTM inputs. In comparison to CRTM, the FCDN_CRTM
minus CRTM mean biases were within several hundredths of a
Kelvin (K), and the corresponding standard deviations (SDs) were
between 0.05 and 0.15 K for all ATMS bands. The accuracies for
both mean bias and SD were consistent throughout the evaluation
period, which spanned approximately 1 year beyond the period
of the FCDN_CRTM training dataset. Furthermore, the model
Jacobians generally compared well with CRTM Jacobians in terms
of surface temperature, wind speed, air temperature, and (log)
water vapor. The performance of the FCDN_CRTM forward and
Jacobian model indicate potential for use in data assimilation
and physical retrieval systems, such as the NOAA operational
Microwave Integrated Retrieval System.

Index Terms—Advanced Technology Microwave Sounder
(ATMS), Community Radiative Transfer Model (CRTM), data
assimilation, deep learning (DL), Jacobian, remote sensing.
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I. INTRODUCTION

THE radiative transfer model (RTM), which is vital for
satellite radiance calibration, data assimilation, and remote

sensing, must efficiently and accurately simulate large volumes
of satellite observations to meet performance requirements in
numerical weather prediction (NWP) systems and near real-time
monitoring of satellite sensors. However, RTMs are one of the
most complicated and computationally expensive components
in data assimilation and remote sensing. Therefore, to improve
computational efficiency, several RTMs, such as the Commu-
nity Radiative Transfer Model (CRTM) [1], [2], the Radiative
Transfer for TOVS (RTTOV) [3], [4], and the recently devel-
oped Advanced Radiative Transfer Modeling System (ARMS)
[5], parameterize atmospheric transmittance through regression
models trained offline, instead of performing line-by-line calcu-
lations. However, with the development of high spatial, spectral,
and temporal resolution sensors, such as the Visible Infrared
Imaging Radiometer Suite (VIIRS), Advanced Technology Mi-
crowave Sounder (ATMS), Cross-track Infrared Sounder on-
board the new generation Joint Polar Satellite System (JPSS),
and Advanced Baseline Imager on the Geostationary Opera-
tional Environmental Satellites—R Series, demand for computa-
tional resources continues to increase in NWP systems where ex-
ecution time allotted is nearly fixed to ensure timely production
of forecast products. In NWP systems, such as the Global Fore-
cast System of the National Centers for Environmental Predic-
tion or the European Centre for Medium-Range Weather Fore-
casts (ECMWF), the efficiency of RTMs remains a key issue.

With rapidly evolving, cutting-edge artificial intelligence
(AI), deep learning (DL), which is one of the most widespread
AI methods, has made a remarkable impact on numerous fields
of science and engineering. Its application in remote sensing and
NWP is presently being explored [6], [7], [8] with the applica-
tions of AI in RTM growing rapidly. An initial shallow neural
network (SNN)-based model, NeuroFlux, has been developed
to accurately determine the longwave radiation budget from the
top of the atmosphere to the surface of the Earth [9]. The SNNs
have been further expanded to more complex architectures to
include multiple hidden layers (deep neural network, DNNs)
and improve RTM accuracy and efficiency, while demonstrating
potential to replace conventional RTMs in climate models [10],
[11], [12], [13], [14].

We have developed a fully connected DNN (FCDN_CRTM),
with CRTM as the reference to emulate the measurements of the
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M-thermal emission bands (TEB/M) for the VIIRS onboard the
satellites of the JPSS and to improve RTM efficiency and accu-
racy [14] for global real-time data monitoring of the sensor radio-
metric biases through applications such as the NOAA Integrated
Calibration/Validation System (ICVS) [15]. The FCDN_CRTM
used upper-air profiles from the ECMWF and sea surface tem-
perature (SST) from the Canadian Meteorology Centre (CMC)
[16] and VIIRS sensor data records (SDR) as inputs to re-
produce VIIRS brightness temperatures (BTs) under clear-sky
conditions over the oceans globally. An FCDN-based clear-sky
mask (FCDN_CSM) algorithm [17], [18] was used to identify
clear-sky pixels. Preliminary results showed that both the mean
bias and standard deviation (SD) of FCDN_CRTM minus CRTM
simulations were only several thousandths or hundredths of a
Kelvin, and the FCDN_CRTM calculations were more than 40
times faster than those of the CRTM. Overall, compared to
traditional RTM, highly accurate and efficient FCDN_CRTM
has been designed to monitor VIIRS TEB/M radiometric biases
in real time.

The CRTM applied to microwave sensors, such as ATMS, is
a critical component for the assimilation of satellite radiances
in NOAA’s regional and global data assimilation systems [19],
physical retrieval algorithms like the operational Microwave
Integrated Retrieval System (MiRS) [20], and sensor calibra-
tion/validation as with the ICVS [15]. Therefore, this article
explored the applications of an FCDN in RTM emulation for
microwave sensors, and extended FCDN_CRTM functionality
to simulate BTs for the 22 ATMS bands. We also investigated the
partial derivatives (PDs) of BTs with respect to the input surface
and atmosphere parameters (i.e., model Jacobian), which are
required for data assimilation. Section II discusses the FCDN
model architecture. Section III describes the data and prepro-
cessing used, while Section IV demonstrates the model training,
tuning, and testing. The FCDN_CRTM BT simulation perfor-
mance is covered in Section V, while Section VI discusses the
FCDN_CRTM Jacobian performance. Finally, the conclusions
and future work are summarized in Section VII.

II. FCDN_CRTM MODEL ARCHITECTURE USED FOR ATMS

The architecture of FCDN_CRTM initially developed for
VIIRS BT simulation, comprised of three hidden layers with
384, 512, and 64 neurons in each layer, respectively. ReLU was
used as the default activation function, and mean square error
(MSE) was employed as the loss function. Furthermore, batch
normalization (BN) [21] and regularization were introduced in
the model to improve model accuracy, efficiency, and general-
ization [14].

The ATMS is a new generation of microwave sounders
covering the frequency range of 23.8–190 GHz (in 22 bands)
to provide information on the atmospheric vertical temperature
and moisture profiles that are the most critical observations
needed for numerical weather forecast models [22]. Since
the FCDN_CRTM has been extensively tested and evaluated
for use in the VIIRS TEB/M bands, we initially used its
model architecture in this study for the simulation of ATMS
BTs. In the meantime, the state-of-the-art hyper tuning tool—
KERAS Tuner (https://www.tensorflow.org/tutorials/keras/

TABLE I
SUMMARY OF INPUT FEATURES AND OUTPUT BRIGHTNESS TEMPERATURES

(BTS) IN THE ATMS FCDN_CRTM

keras_tuner)—was used to determine the performance
of FCDN_CRTM. However, the input data set for the
FCDN_CRTM with ATMS was different from that for VIIRS,
such as input features (discussed in the next subsection), input
data samples, and CRTM simulations. Therefore, owing to
the different spectral regions examined by VIIRS and ATMS,
model fine-tuning was required to ensure high accuracy and
stability while predicting ATMS BTs. The details of model
tuning and comparison before and after tuning are discussed in
Sections IV and V.

The input features were based on the inputs to CRTM simula-
tions for ATMS measurements. Most inputs were similar to the
VIIRS FCDN_CRTM except for the ozone profile, which was
not used in this article, as the contribution of ozone is negligible
with respect to atmosphere absorption and scattering for ATMS
bands. CRTM simulations for the 22 ATMS bands were used
as model reference labels. Similar to the VIIRS FCDN_CRTM,
atmospheric temperature and water vapor profiles, surface pres-
sure, and wind speed (WS) were extracted from the ECMWF
analysis (https://www.ecmwf.int) with a 0.25° horizontal reso-
lution and 91 vertical layers from the surface to 0.01 hPa, which
are downscaled from its original 137 vertical levels when the data
is transited from ECMWF to NOAA. Four analysis files per day
are acquired at 00, 06, 12, and 18 UTC and are used to collocate
with ATMS SDR in time. The SST was obtained from the anal-
ysis of 0.1° resolution daily CMC SST (https://podaac.jpl.nasa.
gov/dataset/CMC0.1deg-CMC-L4-GLOB-v3.0). The other pa-
rameters were determined using the ATMS geography (GEO)
products, such as satellite zenith angle, satellite azimuth angle,
and sensor scan angle. The total number of input features was
188, with corresponding 22 CRTM-simulated ATMS BTs used
as reference labels. Table I lists the input features and reference
labels of the initial model. Also the longitude and latitude from
ATMS GEO products and the sensor BTs from SDR products are
extracted simultaneously to assist model evaluation. Note that
the CRTM is a fast and approximate RTM, which uses trained
transmittance coefficients to fit a line-by-line RTM (LBLRTM)
[23], [24]. Here, the use of CRTM simulations as reference labels

https://www.tensorflow.org/tutorials/keras/penalty -@M keras_tuner
https://www.ecmwf.int
https://podaac.jpl.nasa.gov/dataset/CMC0.1deg-CMC-L4-GLOB-v3.0
https://podaac.jpl.nasa.gov/dataset/CMC0.1deg-CMC-L4-GLOB-v3.0


LIANG et al.: DEEP-LEARNING-BASED MICROWAVE RADIATIVE TRANSFER EMULATOR 8821

will be more efficient in generating the large dataset needed for
FCDN_CRTM training, testing, and evaluation. However, future
work will consider using LBLRTM for generating training data
not only for further FCDN_CRTM validation, but particularly
for FCDN_CRTM applied to hyperspectral IR sensors where
some spectral regions are sensitive to multiple trace gases.

III. DATA PREPROCESSING AND CRTM SIMULATIONS

Data preprocessing refers to collecting input data and generat-
ing reference labels for FCDN_CRTM. Dispersed data obtained
from NOAA-20 for 12 days were utilized as FCDN_CRTM input
data. We used data from the 26th day of each month between
December 2019 and November 2020, which encompassed the
atmospheric and surface conditions in all seasons. The selection
of the 26th was somewhat arbitrary, but the data met criteria
based on the completeness, wherein no gaps or duplications were
reported in the archive of the NOAA-20 geolocation (GEO) and
SDR products, as well as ECMWF and CMC SST.

After collecting ECMWF, CMC SST, and ATMS SDR data for
12 days, one of primary steps in data preprocessing—generating
FCDN_CRTM reference labels, namely 22 ATMS BTs—was
performed using CRTM simulations. The simulations were cre-
ated by interpolating both ECMWF quarter degree and CMC
SST grid data to the ATMS SDR pixels in space and time for
input to CRTM, along with the ATMS scan geometry.

In the preliminary experiment, we assumed that clouds were
transparent in the microwave region and thus did not in-
clude cloud parameters in the CRTM simulations. Additionally,
we only focused on the global ocean domain. These assump-
tions, which are likely to result in large simulation biases and
uncertainties in some ATMS bands compared to clear-sky condi-
tions, will be discussed later. However, excluding cloud profiles
and different types of clouds reduced several hundreds of input
features and simplified the design of the initial model. Conse-
quently, the initial model could rapidly evaluate FCDN_CRTM
performance after transferring from VIIRS to ATMS, determine
model Jacobian performance, and assist in the development of
an all-sky model for ATMS, which would include cloud param-
eters and land surface analysis. Nonetheless, development of
the ATMS FCDN_CRTM under all-sky conditions is currently
under way.

In this study, the latest CRTM version 2.3 was used to simulate
ATMS BTs. Fig. 1 illustrates the global distribution of the
observed ATMS BTs minus CRTM simulations of bands 1,
10, and 22 from the data obtained for 22 Feb. 2021, and their
corresponding histograms were shown in Fig. 2. We observed
large bias and SD in band 1 (4.403 ± 7.328 K), along with
skewness, primarily because of the large uncertainty in surface
emissivity and missing cloud parameters. However, for the high
peaking channel, band 10, the mean bias and SD (0.444 ±
0.316 K) decreased, as this band is not sensitive to clouds or
the surface. Slightly large SDs in band 22 (−0.067 ± 2.203 K)
may be attributed to the higher noise in the 183 GHz bands along
with sensitivity to frozen hydrometeors. Although the accuracy
of the CRTM simulations were significantly affected by surface
emissivity, atmosphere profiles, and missing cloud parameters,
we did not conduct any quality control and maintained all pixels

Fig. 1. Global distribution of ATMS observation minus CRTM simulation for
ATMS band 1, 10, and 22.

in the global scenario to train FCDN_CRTM. This was done to
determine the generalization performance of the model under
any atmospheric condition.

IV. FCDN_CRTM TUNING TO IMPROVE MODEL ACCURACY

As discussed in Section II, we first trained and tested the
basic architecture of FCDN_CRTM with ATMS data as inputs
(referred to initial test), and then focused on tuning the model for
sample-size determination, model separation, and introduction
of novel features based on three sensitivity experiments.

As the magnitude of input data varied because of different
units, data were standardized using their means (μ) and SDs (σ)
before they were used for model training

x̄ =
x− μ

σ
(1)

where x and x̄ stand for the model input data before and
after standardization, respectively. Approximately 23 million
(M) data samples were collected from the 12 days of CRTM
simulations. The collected data were adequately shuffled and
roughly separated into training, testing, and validation datasets
in the ratio 8:1:1, wherein the number of training data samples
was approximately 20 M.

The convergence status of the loss for the initial test are shown
in panel (a, blue curve) of Fig. 3; and the corresponding statistics
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Fig. 2. Histogram of ATMS observation minus CRTM simulation for ATMS
band 1, 10, and 22.

of FCDN_CRTM prediction minus CRTM simulation are shown
in Fig. 4. The loss is close to coverage at about 10 million
iterations. For all 22 bands, the mean biases of FCDN_CRTM
minus CRTM are up to −0.15 K and SDs are within 0.2 K,
indicating that the three-hidden-layer design, with BN and reg-
ularization algorithms, was still one of the good designs to
predict ATMS BTs with comparison to the difference between
CRTM simulation and ATMS BTs. But for high demand of
sensor validation and data assimilation, model tuning is needed
to further improve prediction accuracy.

Fig. 3. Model convergence for six different training sample data sizes.
(a) Selected decreasing loss as function of iterations (1024 data samples as
inputs for each iteration). (b) Same as (a), but as function of epochs. (c) Same
as (a), but for mean square error (MSE). (d) MSEs between the training and
validation datasets for six cases.

Fig. 4. Mean bias and SD of FCDN_CRTM minus CRTM simulations for the
test dataset.

A. Sample Size Determination for Model Training

A large number of data samples, for several months and even
for an entire year, can be generated with ample resources and
time. A key question is: what is the amount and representation
of the data to optimize the training and model performance?
Generally, too small data samples will make the model less
accurate, whereas large data samples will require more time and
memory space, although they will increase the accuracy and
generalization of the model. Additionally, most DL models risk
overfitting without adequate data representation. Since the input
sample size is a considerable hyperparameter in FCDN_CRTM,
a sensitivity experiment was conducted using six different sam-
ple sizes, including 0.5 M, 1 M, 2.5 M, 5 M, 10 M, and entire 20
M data samples (e.f. initial test), to train the model and determine
the sample size of the data. The data samples of the former five
cases were randomly selected from the 20 M training dataset.

Fig. 3 shows model convergence and learning curves
while training the model using six different data sizes as
FCDN_CRTM inputs. Panels (a) and (b) show decreasing loss
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as a function of iterations and epochs. There were 1024 data
sample inputs (batch size) for FCDN_CRTM in each iteration,
with more data samples resulting in longer model convergence
times. Furthermore, the loss converged at the smallest value for
the largest sample size (20 M). Panel (c) is similar to panel
(a), but indicates MSE. Panel (d) shows the MSEs between the
training and validation datasets for all six cases. Note that as
shown in (2) of [14], the loss function differs from MSE when
the regularization is introduced in the model, which includes
an L2 regularization term, in addition to MSE. The MSEs are
consistent between the two datasets, indicating no significant
overfitting for all cases. Interestingly, panels (c) and (d) reveal
that at the end of the training period, MSE did not converge for
the smallest value in the 20 M case with both training and val-
idation datasets, although the loss functions did. Fig. 4 showed
the mean biases and SDs of the FCDN_CRTM prediction minus
CRTM simulation for test dataset for six cases. It is obvious that
the most accurate prediction was not observed for 20 M case,
but for the 5 M case, in which the mean biases are less than
0.03 K in comparison to 0.15 K in the 20 M case; and the SDs
are reduced ∼0.03 K for all bands.

Therefore, we hypothesized that the 20 M case may not
completely converge, and may need more time to train. However,
we more suspected that the loss may not fully optimized due
to the limitation of the model complexity. The large-scale data
samples may require a more complex framework for training.
On the other hand, the more complicated the model is, the less
efficiency the model will be. Overall, the 5 M case showed the
high prediction accuracy, and is the best fit for the FCDN_CRTM
training among the six cases. Hereafter, we use 5 M data samples
to train the model and continue to do latter sensitivity exper-
iments, and leave the exploring more complicated model for
future work.

B. Three-Model Design Based on Band Radiation Properties

The 22 ATMS bands are sensitive to input data at varying
degrees. Bands 5–15 are sensitive to oxygen absorption and
therefore atmospheric temperature, but not the surface or low
clouds, and are referred to as temperature sounding bands
(T-bands). Bands 1–4 and 16–17 are surface bands (S-bands)
and more sensitive to the surface and clouds. Bands 18–22 are
humidity sounding bands (H-bands) and more sensitive to water
vapor and frozen hydrometeors. If the bands are trained using
one model, with different sensitivities to the input data, they
may interact with, and limit, model accuracy. To identify and
minimize these effects on model accuracy, we trained the three
band groups separately (three-model design).

Fig. 5 shows the mean biases (upper) and SDs (lower)
of FCDN_CRTM minus CRTM between one-model and
three-model designs. We observed that the three-model design
reduced SD by up to 0.05 K compared to the one-model design.

C. Introducing Emissivity as a Novel Feature

Emissivity is a key parameter used to estimate surface emis-
sion and reflection in RTMs. We previously discussed that the
CRTM simulation was affected by the uncertainty of surface

Fig. 5. Mean bias (upper) and SD (lower) of FCDN_CRTM minus CRTM
between the one-model and three-model design.

Fig. 6. Mean bias (upper) and SD (lower) of FCDN_CRTM minus CRTM
between the models with and without emissivity as an input feature.

emissivity, particularly for S-bands. In CRTM, ocean surface
emissivity is band-dependent and calculated using WS and
direction, SST, and salinity, with several geophysical angles of
the sensor based on the complex FAST microwave emissivity
model [25], [26], [27], which are related to ocean wave facets
and foam distribution. However, WS, SST, and geophysical
parameters of the sensor alone may not represent the emissivity
of the 22 bands to accurately predict BTs in the FCDN_CRTM
model. Therefore, we performed a sensitivity experiment with
emissivity as a novel feature to determine model accuracy. We
retained the three-model design and supplemented the model
with the emissivity of the 22 bands as new input features,
which were precalculated using CRTM. Fig. 6 compares the
results of the models with or without emissivity. The mean
biases of FCDN_CRTM minus CRTM were comparable, but
SDs decreased for all S-bands when emissivity was included as
a novel feature.

V. MODEL EVALUATION

Based on the sensitivity experiments, a final design of the
FCDN_CRTM was implemented using 5 M data samples for
training, using the three-model design instead of one, and in-
troducing surface emissivity as a novel feature for the S-band
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TABLE II
MEAN BIAS AND SD OF FCDN_CRTM MINUS CRTM FOR TEST DATA FOR

ONE-MODEL AND THREE-MODEL

model. In this section, we present a detailed evaluation of the
FCDN_CRTM accuracy, efficiency, and robustness (namely,
generalization). Since the one-model design is more computa-
tionally efficient despite altered accuracy as it does not require
an additional computation for emissivity, it can be used for high
efficiency applications, such as the evaluation of model Jacobian,
which will be discussed in next section.

A. Model Accuracy for Test Data

Table II shows the mean bias and SD of FCDN_CRTM
minus CRTM for test data after FCDN_CRTM reconstruction
for both one-model and three-model. The mean biases were
within 0.025 K for all bands and were comparable between
the two models. However, the SDs for three-model and were
smaller by 0.03–0.06 K than one-model. The SD values were
between 0.05 K and 0.11 K. The T-band performed the best,
(0.05–0.07 K), followed by H-band (0.09–0.108 K) and S-band
(0.07–0.114 K). The highest accuracy in T-bands is mainly due
to their less sensitivity to complicated surface emissivity and low
cloud, as discussed in last section. On the contrary, the SDs are
slightly worse for more surface-sensitive S-bands. For H-bands,
the SDs are partially affected by the more uncertainty in water
vapor contents. Nevertheless, the FCDN_CRTM showed much
higher accuracy after reconstruction for all three-band groups
than the initial test. In the rest of this section, the three-model
was used to evaluate the FCDN_CRTM performance.

Fig. 7 illustrates the global distribution of FCDN_CRTM
minus CRTM and corresponding histograms for the smallest
and largest SDs among the 22 bands, i.e., for bands 8 and 17,
respectively. The global distributions were quite uniform for all

Fig. 7. Global distribution of FCDN_CRTM minus CRTM (upper two panels)
and corresponding histograms (bottom two panels) for the smallest and largest
SDs—Band 8 and Band 17.

bands, with most of the values close to 0. The histograms were
nearly Gaussian, with slight noise for band 17, indicating that
the model did not have significant outliers. The global distri-
butions for other bands were similar to those of bands 8 or 17.
Overall, the FCDM_CRTM was highly accurate at predicting
BTs and emulating CRTM simulations.

B. Model Robustness

To determine the stability of the model, the FCDN_CRTM
was used to predict ATMS BTs for six days independent from
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Fig. 8. FCDN_CRTM simulation results for six days. The test data are also
overlaid in the figure to assist comparison of the accuracy.

the training set, including 28 Nov. 2020, 22 Jan. 2021, 22 Feb.
2021, 22 Mar. 2021, 12 Jul. 2021, and 12 Sep. 2021, which
covered about 1 year after the end of the training period.

Fig. 8 shows the results of FCDN_CRTM predictions for
the six days. The test data are also overlaid in the figure to
assist the comparison of prediction accuracy. The mean biases
of FCDN_CRTM minus CRTM were approximately 0 and
comparable to test data for all six days. In contrast, the SDs
were comparable or slightly larger than those of test data, with
amplitudes within 0.02 K for S-bands, 0.03 K for T-bands, and
0.05 K for H-bands. The smallest SD was 0.052 K for 22 Feb.
2021 (band 8) and the largest SD was 0.152 K for 12 Jul. 2021
(band 22), which were separated from the training period by
eight months.

Fig. 9 illustrates the global distribution of FCDN_CRTM
minus CRTM and corresponding histograms for the smallest
(band 8) and largest SDs (band 22). Similar to test data, the
global distribution was uniform and approximately 0 for the
smallest SD. Although some noise exists in band 22, such as at
high latitudes of the Southern Hemisphere and in some coastal
regions, maybe due to the higher noise in this band, and cloud
contamination and more uncertainty of the water vapor contents
in these areas, most of the global distribution is uniform and
close to 0, and the corresponding histograms exhibit a Gaussian
distribution. There were approximately 50 outliers out of 2-M
samples, with mean biases greater than 2 K, which necessitate
further investigation. Overall, the FCDN_CRTM results for the
six days indicated that the model was robust and could accurately
predict BTs for all ATMS bands beyond the training period.

C. Comparison With ATMS Measurements

Ultimately the objective of the FCDN_CRTM simulate the
observed BTs of ATMS, matching or exceeding the performance
of CRTM.

Table III shows the global mean bias and SD of ATMS minus
CRTM and ATMS minus FCDN_CRTM for 22 Feb. 2021, for
all 22 bands. Both the mean bias and SD between FCDN_CRTM
and CRTM were consistent for the temperature and water vapor
sounding bands as well as the surface bands. The differences in
mean bias and SD between FCDN_CRTM and CRTM were only

Fig. 9. Global distribution of FCDN_CRTM minus CRTM (upper two panels)
and corresponding histograms (bottom two panels) for the smallest SD (22 Feb.
2021, Band 8) and the largest SDs (12 Jul. 2021, Band 22) among the independent
data testing.

up to 0.015 and 0.014 K, respectively. This further suggested
that FCDN_CRTM results were close to CRTM results, when
compared with ATMS SDR. As indicated in Section III, all mean
biases and SDs for S- and H-bands were slightly larger than those
for T-bands, suggesting that these bands were more sensitive to
surface emissivity and clouds.

Fig. 10 demonstrates that the global distributions of ATMS
minus FCDN_CRTM and ATMS minus CRTM were compara-
ble for bands 3 and 5 on 22 Feb. 2021. Although the global
distribution of the BT differences is quite different between
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TABLE III
MEAN BIAS AND SD OF ATMS MINUS CRTM AND ATMS MINUS

FCDN_CRTM ON 22 FEB. 2021

bands 3 and 5, due to different band group, for the same band, the
ATMS minus FCDN_CRTM are well consistent with ATMS mi-
nus CRTM. This further verified the accuracy of FCDN_CRTM
with respect to the reference CRTM.

D. Model Efficiency

One important benefit of AI is increased efficiency in perform-
ing calculations. For CRTM on a Linux server running (24 3.4
GHz Intel Xeon CPUs), the simulation required approximately
900 s to simulation 2 M ATMS clear-sky scenes. In contrast,
the total processing time for the FCDN_CRTM with multiple
CPUs was only 8 s for the one-model design and 17 s for the
three-model design, which were 112 times and 53 times faster
than that CRTM, respectively. Liang and Liu [14] reported that
the increase in efficiency for FCDN_CRTM was primarily due
to the DNN architecture, rather than increasing the number of
CPU resources. Further improvement in efficiency is expected
for all-sky radiance simulations, where CRTM scattering calcu-
lations require more CPU time compared with clear-sky scenes.

VI. MODEL JACOBIAN

Variational data assimilation and remote sensing algorithms
not only require accurately simulated BTs but also PDs of
the BTs with respect to atmospheric and surface geophysical
parameters, which are collectively called Jacobians. Jacobians
are required to estimate the gradient of the cost function during
minimization in data assimilation [19]. The FCDN_CRTM can
automatically produce model Jacobians during model training.
Therefore, the model Jacobians can be obtained as a direct output

Fig. 10. Global distribution of mean bias of ATMS minus FCDN_CRTM and
ATMS minus CRTM for ATMS band 3 (upper two panels) and band 5 (bottom
two panels) on 22 Feb. 2021.

of the FCDN_CRTM, as opposed to requiring a separate ML
model, or the need to write more complex tangent linear and
adjoint methods as implemented in CRTM. Through evaluation
of the FCDN_CRTM Jacobian, the possibility of using an RTM
emulator in data assimilation applications can be assessed, and
the simulated BTs can be further validated (i.e., explainable AI).

A. Model Jacobian Equation

Assume that BTs y were mapped from input x using the
FCDN_CRTM model H (2) and the input x was standardized
before it was input to the model (1), then the PD of y to x can be
represented as (3), based on the derivative chain rule. A detailed
proof of (3) and the later (4) was showed at the Appendix A

y = H (x) (2)
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Fig. 11. Summary of the FCDN_CRTM Jacobian compared to CRTM. (a) Profiles of air temperature and water vapor contents. (b) Partial derivatives with respect
to wind speed. (c) Partial derivatives with respect to sea surface temperature. (d–f) Partial derivatives with respect to air temperature profile for band 1, 8, and 22.
(g–i) Partial derivatives with respect to water vapor content profile for band 1, 8, and 22. The curves are the mean of all samples with ±σ in the filled areas. The
curves (b) and (c) are slightly shifted in x-axis to clearly distinguish partial derivatives between CRTM and FCDN_CRTM.

∂y

∂x
=

∂y

∂x̄

∂x̄

∂x
=

1

σx

∂y

∂x̄
. (3)

Thereafter, ∂y
∂x̄ can be automatically calculated from the

FCDN_CRTM model (Appendix B). As input x includes 188
features for 22 output BTs, we can obtain a 188 × 22 Jacobian
matrix for each sample. However, producing all Jacobian matri-
ces for 2 M test data samples requires large memory resources.
Therefore, we randomly selected 5000 profiles to evaluate the
FCDN_CRTM Jacobian in comparison to CRTM Jacobians.

Although the three-model design exhibited more accuracy
than the one-model design in BT space, the efficiency was
reduced by a factor of two. Additionally, emissivity reduced
the efficiency of the FCDN_CRTM model at both training and
testing, as the model incurred an additional computational cost.
For data assimilation, with high demand for model efficiency,
it is necessary to balance the efficiency and accuracy of the
model. Furthermore, an offline analysis indicated that there
was not significantly different in Jacobian between one- and
three-model. Therefore, in this section, we first selected the more
efficient one-model design to determine the model Jacobian,
then we further improved model accuracy based on the evalu-
ation of the Jacobians. For the FCDN_CRTM clear-sky model,
the PDs of the 22 ATMS bands were considered with respect
to four parameters, including surface WS, SST, atmospheric

temperature at 91 layers (AT), and atmospheric water vapor
content at 91 layers (WV).

B. Evaluation of Model Jacobian

Fig. 11 summarizes the FCDN_CRTM Jacobian compared to
that of the CRTM. The profiles of temperature and water vapor
are shown in panel (a) to assist with the model Jacobian eval-
uation. The curves in Panels (b) ∂y/∂(xws) and (c) ∂y/∂(xsst)
are slightly shifted along the x-axis to clearly distinguish the
PDs between CRTM and FCDN_CRTM. Both curves reveal
consistency between CRTM and FCDN_CRTM for all bands.
Moreover, most PDs for T- and H-bands were approximately 0
due to insensitivity of these bands to the surface. All ∂y/∂(xws)
were positive for S-bands, indicating that BTs increased with
increasing WS.

Panels (d)–(i) show the ∂y/∂(xat) and ∂y/∂(xwv). Bands
1, 8, and 22 were selected to determine the accuracy of
the Jacobians for the three band groups. The PDs for other
bands are not shown as their PDs are similar to those of the
selected bands. The curves of ∂y/∂(xat)were mostly consistent
with CRTM, with slight oscillations in the vertical for all bands.
The oscillation for the S-band was the largest, likely due to
the large uncertainty of the surface emissivity. The oscillations
became smaller for H-bands and were minimal for T-bands.
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Fig. 12. Summary of the updated FCDN_CRTM Jacobian compared to CRTM. Same as Fig. 11, but using updated FCDN_CRTM. (a) BT differences between
the original or updated FCDN_CRTM and CRTM. (b–i) same as Fig. 11(b)–(i), but for FCDN_U.

However, the uncertainties of PDs were considerably large
compared to those of the CRTM for all bands, particularly for
S-bands, followed by H-bands and T-bands, which was similar
to the pattern of PD oscillation. As shown in panel (g)–(i), the
∂y/∂(xwv) were consistent with CRTM below layer 40; they
were close to 0 for S-bands and T-bands and showed a notable
increase with CRTM for H-bands. However, unrealistic oscilla-
tions and noise prevailed above layer 50 (below 200 hPa) for all
bands. The oscillation reached several tens and the uncertainty
went up to several hundreds compared to near 0 for CRTM PDs.
This suggests that the model Jacobian could not be used for data
assimilation, and also indicated that the FCDN_CRTM requires
further improvement.

C. Improving Model Jacobian

Evaluation of the FCDN_CRTM Jacobian revealed that two
issues needed to be addressed—the first issue was the large oscil-
lation and uncertainty in ∂y/∂(xwv) above layer 50 and second
that was the large uncertainty in ∂y/∂(xat), particularly for
S-bands. The first issue was likely due to the standardization of
layer water vapor content when used as input for FCDN_CRTM.
As shown in Fig. 11(a), both mean and SD in the water vapor
for the layers above 50 were extremely close to 0. Any biases
or random error in PDs generated from the FCDN_CRTM
were unrealistically enlarged when they were divided by the

SD of the water vapor content (3). Therefore, using absolute
water vapor content instead of their standardization as input
may reduce the large oscillations and uncertainty of PDs above
layer 50. Subsequently, to minimize the uncertainty in PDs of
atmospheric temperature, we may eliminate the BN algorithm
from the model. Based on the Tensorflow document1, BN alters
target-source independence as it normalizes data across the batch
dimension. However, removing BN may reduce model accuracy
or generalization [14], and using absolute water vapor content
instead of their standardization as model inputs may further
affect model accuracy. To compensate the possible loss, we used
the standardization of output, the BTs at 22 ATMS bands, and
modified (3)–(4), as follows:

∂y

∂x
=

σy

σx

∂ȳ

∂x̄
if xwas notWV

∂y

∂x
= σy

∂ȳ

∂x̄
if xwasWV. (4)

As demonstrated in the previous section, using surface emis-
sivity as a model input could improve model accuracy for
S-bands. However, extra computing time and other resources
are required to calculate emissivity, which further lowers model
efficiency. Therefore, emissivity was not used for Jacobian eval-
uation, but it may be a good option for other applications. Fig. 12

1[Online]. Available: https://www.tensorflow.org/guide/advanced_autodiff

https://www.tensorflow.org/guide/advanced_autodiff
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Fig. 13. PDs to 91-layer air temperatures between CRTM and FCDN_CRTM for the bands not showed in Fig. 12.

shows the updated FCDN_CRTM (FCDN_U) BTs and Jacobian
compared to CRTM. Both mean and SD for the FCDN_U BTs
were closer to 0 and much smaller than those of FCDN_CRTM
for all bands, indicating that using standardization of output
further improved model accuracy Although the uncertainties of
the ∂y/∂(xws) and ∂y/∂(xsst) in S-bands remained unchanged,
those in T- and H-bands decreased and both were close to 0.
Additionally, the uncertainties for ∂y/∂(xat) were significantly
reduced for all bands, particularly for T- and H-bands, which
were closer to the CRTM Jacobians. Furthermore, the unrealistic
oscillation and uncertainty in the ∂y/∂(xwv) above layer 50
were significantly reduced after eliminating the standardization
of water vapor content. However, the oscillation and uncertainty
still remained quite large and deviated from the CRTM Jacobian,
particularly for S- and T-bands, in which most CRTM PDs were
close to 0.

Figs. 13 and 14 show ∂y/∂(xat) and ∂y/∂(xwv) of the other
19 bands, which are not shown in Fig. 12. We observed that
for the same band group, the patterns of the PD curves were
similar. Similar to Fig. 12(g)–(i), Fig. 14 revealed the large
deviations from the CRTM Jacobian above layer 50 for all
bands. Some of these issues have been addressed in previous
studies [28], [29], [30]. For an NN model, the data on pressure
level are partially lost when the model inputs map its outputs

using a nonlinear projection, and the shape for ∂y/∂(xwv)
is more pronounced. This issue needs further investigation.
However, many data assimilation systems do not use abso-
lute water vapor content in the state vector. For instance, the
NOAA MiRS uses the logarithm of the water vapor content
to avoid negative water vapor in the retrieval when projecting
back to absolute space. Therefore, we assessed the Jacobian for
the logarithm of water vapor content, ∂y/∂(log(xwv)), which
is equal to wv ∗ ∂y/∂(log(xwv)). Fig. 15, by demonstrating
∂y/∂(log(xwv)) for all bands, revealed that all oscillations
above layer 50 were removed, making the PDs consistent with
those of CRTM in these layers. As the absolute water vapor
contents above layer 50 are close to 0, the ∂y/∂(log(xwv)),
obtained by multiplying absolute WV, were certainly close to
0 in these layers, making the curves consistent with those of
CRTM. However, as shown in the Fig. 15, ∂y/∂(log(xwv))
increased the oscillation and noise near the surface. This was
because the absolute water vapor content near the surface was
several orders of magnitude larger than that at higher layers,
indicating that any bias and noise in ∂y/∂(xwv) would be
enlarged after multiplying it with the large magnitude of the WV
near the surface to obtain ∂y/∂(log(xwv)). Despite these small
artifacts, further investigations are planned to assess application
of FCDN_CRTM in MiRS.
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Fig. 14. PDs for water vapor at 91 pressure layers between CRTM (red) and FCDN_CRTM (blue) for the bands not showed in Fig. 12 (bands 2–7 and 9–21).

Fig. 15. Same as in Fig. 14, but showing PDs for the logarithm of water vapor for all ATMS bands.
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VII. CONCLUSION

In this article, we proposed an initial FCDN_CRTM to explore
the efficiency and accuracy of emulating the RTM of ATMS BTs
in the 22 microwave bands for clear-sky, ocean scenes. The input
features were extracted from ECMWF analysis, CMC SST, and
ATMS SDR products, while the CRTM simulated BTs were
used as model reference labels. The FCDN_CRTM training
dataset spanned 12 days over 1 year to encompass varying
atmospheric and surface conditions. An additional dataset of
six days, encompassing 1 year after the end of the training
period, was used to determine the stability and generalization of
the model. Simultaneously, the Jacobians of the 22 bands were
evaluated with respect to surface state and atmosphere profiles
to further validate the BT simulations, and explore the use of the
model in data assimilation and physical inversion algorithms.

The initial FCDN_CRTM was fine-tuned through three sen-
sitivity experiments with respect to sample-size determination,
model separation, and introduction of novel features, toward
improving the accuracy of the model. The reconstructed model
was well evaluated on model accuracy, efficiency, and long-term
stability. The FCDN_CRTM simulations were in good agree-
ment with those of CRTM. The mean bias and SD were within
0.025 K and 0.05–0.15 K, respectively, for all ATMS bands.
The SD for T-bands were the smallest, followed by H- and S-
bands. The global distributions of FCDN_CRTM minus CRTM
were uniform and their corresponding histogram distributions
were Gaussian. The high accuracy was consistent when the
FCDN_CRTM was applied to data outside of the training period.
Upon comparison with real ATMS observations, both the mean
bias and SD of FCDN_CRTM and CRTM were consistent with
each other for all bands. Furthermore, the FCDN_CRTM simu-
lations were 112 times (one-model) and 53 times (three-model)
faster compared to CRTM simulations.

To determine the possible applications of the model in data
assimilation and further improve its accuracy, we evaluated
the FCDN_CRTM Jacobian. The initial evaluation identified
two main issues in the FCDN_CRTM Jacobian associated with
vertical oscillations and large uncertainty in ∂y/∂(xwv) above
layer 50, and large uncertainty in ∂y/∂(xat). An updated
FCDN_CRTM, including training the water vapor in log space,
significantly minimized both issues and further improved model
accuracy. The results and performance both in terms of accuracy
and efficiency, indicate that the FCDN_CRTM may be tested as
a forward and Jacobian operator in data assimilation.

APPENDIX A
PROOF OF (3) AND (4)

In this appendix, we give a detailed derivation for (3) and (4).
When we standardize the input data x, (1) can be rewritten as

x̄ =
x− μx

σx
. (A1)

Wecan get
∂x̄

∂x
=

1

σx
. (A2)

Based on the chain rule, (3) can be proved as

∂y

∂x
=

∂y

∂x̄

∂x̄

∂x
=

1

σx

∂y

∂x̄
. (A3)

If y is also standardized as ȳ =
y − μy

σy
(A4)

then
∂ȳ

∂y
=

1

σy
. (A5)

So (4) can be obtained as

∂y

∂x
=

σy

∂ȳ

∂ȳ

∂x̄

∂x̄

∂x
=σy

∂ȳ

∂x̄

1

σx
=

σy

σx

∂ȳ

∂x̄
(if xwas notWV) .

(A6)
However, in the updated model FCDN_U, we did not stan-

dardize WV, so

∂y

∂x
=

σy

∂ȳ

∂ȳ

∂x
= σy

∂ȳ

∂x
(if xwas notWV). (A7)

APPENDIX B
CALCULATION OF FCDN_CRTM JACOBIAN

For general multilayer networks with N−1 nonlinear layers
and one linear output layer and without BN included in all layers,
the nonlinear layer i can be defined as follows:

Zi = Wi−1 Ai−1 +Bi, (0 < i < N) (A8)

Ai = G (Zi) (A9)

A0 = X. (A10)

Here, Wi−1 is the weight matrix associated with layers i−1
and i, andBi is the bias matrix.Ai andZi are the outputs in layer
i with and without nonlinear activation function G constraint.
Ai will be input data matrix X in the input layer when i = 0. The
output layer N calculates output Y as

Y = AN = WN−1 AN−1 +BN . (A11)

Thus, the model Jacobian matrix can be calculated as

∂Y

∂X
= WN−1

∂AN−1

∂X

= WN−1 G
′ (ZN−1)WN−2

∂AN−2

∂X

= WN−1 G
′ (ZN−1)WN−2G

′ (ZN−2)

WN−3 . . . G
′ (Z1)W0

= WN−1

0∏

i = N−2

G′ (Zi+1)Wi. (A12)

Equation (A12) calculates Jacobian for general multilayer
networks. The FCDN_CRTM model include three nonlinear
layers, thus N = 4. Since ReLU was used as an activation
function in FCDN_CRTM, G′(Zi) is a matrix containing only
0 and 1. The algorithm has been included in the FCDN_CRTM
model to calculate the PDs of output BTs to each input variable.
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